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With almost 2,600 species, Rodentia is the most diverse order of mammals. Here, we provide an overview of 
changes in our understanding of the systematics of living rodents, including species recognition and delimitation, 
phylogenetics, and classification, with emphasis on the last three decades. Roughly, this corresponds to the DNA 
sequencing era of rodent systematics, but the field is undergoing a transition into the genomic era. At least 248 
species were newly described in the period 2000–2017, including novelties such as the first living member of 
Diatomyidae and a murid species without molars (Paucidentomys vermidax), thus highlighting the fact that our 
understanding of rodent diversity is going through an age of discovery. Mito-nuclear discordance (including that 
resulting from mitochondrial introgression) has been detected in some of the few taxonomic studies that have 
assessed variation of two or more unlinked loci. As studies incorporate more loci, incomplete lineage sorting and 
introgression are likely to gain recognition as widespread phenomena in the near future. Molecular phylogenetics 
has had a major impact in rodent phylogeny and allowed the identification of three major rodent clades, here 
recognized as suborders: 1)  the Hystricomorpha (sometimes referred as the Ctenohystrica) and including two 
infraorders, Hystricognathi and Ctenodactylomorphi; 2) the Sciuromorpha; and 3) the Supramyomorpha, a new 
suborder that comprises the infraorders Castorimorphi, Anomalurimorphi, and Myomorphi. In spite of the greater 
understanding and ensuing stability of rodent phylogeny gained during the last three decades, several major areas 
of the rodent tree remain unresolved or poorly supported. We expect that the analysis of genomic-scale data will 
help resolve those areas of the radiation of Rodentia that still remain poorly understood.

Con casi 2.600 especies vivientes, los roedores componen el orden más diverso de mamíferos. En este trabajo, 
revisamos los cambios principales ocurridos durante las últimas 3 décadas, en aspectos de delimitación de 
especies, filogenia y clasificación del orden Rodentia. A grandes rasgos, este período corresponde a la era en que la 
secuenciación del ADN se incorporo a la sistemática de roedores, campo que actualmente está experimentando una 
transición hacia la era genómica. Al menos 248 nuevas especies fueron descritas en el período 2000–2017; entre 
estas se incluyen el primer miembro viviente de la familia Diatomyidae y una especie sin molares (Paucidentomys 
vermidax). El alto número de nuevas especies sugeridas indica que el campo de la diversidad de roedores está 
atravesando actualmente una era de descubrimiento. En algunos de los pocos estudios taxonómicos que han 
evaluado la variación de 2 o más loci no ligados, se ha detectado discordancia mito-nuclear (incluida la resultante 
de introgresión mitocondrial). Se sugiere que a medida que los estudios incorporen más loci, los casos reportados 
de reparto desigual de linajes e introgresión se incrementaran y serán considerados como procesos relativamente 
comunes en la diferenciación y demografía de roedores. El uso de caracteres moleculares ha tenido un gran 
impacto en la sistemática de Rodentia, permitiendo la identificación de tres principales clados de roedores, aquí 
reconocidos como subórdenes: 1) Hystricomorpha (referido como Ctenohystrica en algunos estudios) que incluye 
2 infraorders, Hystricognathi y Ctenodactylomorphi; 2) Sciuromorpha, y 3) Supramyomorpha, nuevo suborden, 
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que comprende los infraorders Castorimorphi, Anomalurimorphi y Myomorphi. A pesar de la mayor comprensión 
y la consiguiente estabilidad de la filogenia de roedores obtenida durante las últimas 3 décadas, partes importantes 
del árbol de roedores permanecen sin resolver o tienen un apoyo deficiente. Se espera que la incorporación de una 
perspectiva genómica ayude a resolver parte de las zonas aún no bien caracterizadas de la radiación de Rodentia.

Key words:  classification, diversity, phylogeny, Rodentia, species recognition

Rodentia is the most diverse order of mammals, with almost 2,600 
species, representing 40% of the living mammal species (Mammal 
Diversity Database 2018). In addition, this percentage tends to 
rise because most mammal species newly described or elevated 
from synonymy are rodents. Living rodents range in size from 
some species of mice weighing 5 g to capybaras (Hydrochoerus 
hydrochaeris), which can weigh over 70 kg. This range dramati-
cally increases if extinct forms are considered; estimations of the 
weight of Josephoartigasia monesi, an extinct dinomyid, give 
values of nearly 1,000 kg, positing it as the largest known rodent 
(Millien 2008; Rinderknecht and Blanco 2008). However, most 
rodent species weigh less than 1 kg. Native rodents are found on 
all landmasses except Antarctica, New Zealand, and some oce-
anic islands, where they display a variety of forms and life histo-
ries. The rodent radiation includes subterranean species, gliding 
squirrels, and a large array of semiaquatic lineages, as well as the 
more common arboreal, scansorial, or cursorial forms.

All rodents have highly specialized gnawing dentition, which 
lacks canines and is composed of a single pair of upper and a 
single pair of lower continuously growing incisors. Posterior to 
the incisors is a diastema, followed by one or more pairs of molars 
and premolars, although the recently discovered Paucidentomys 
has no molariform teeth (Esselstyn et al. 2012). Rodent incisors 
are rootless, grow continuously, and have enamel only on their 
anterior and lateral surfaces. Although a dentition specialized for 
gnawing is not unique to rodents (for instance, extinct multituber-
culates and extant groups, such as wombats, hyraxes, aye-ayes, 
and lagomorphs, have a similar pattern), the group has special-
ized in gnawing to an extreme. Important muscles for chewing 
are the masseters, which show distinct patterns of bone insertions 
and associated usage in rodents (Druzinsky 2015). These patterns 
have historically been the basis to classify rodents (see below).

The recognition, characterization, classification, and under-
standing of rodent diversity and evolution have been, and con-
tinue to represent, major challenges in mammalian systematics. 
The publication of the influential Luckett and Hartenberger’s 
(1985) edited book on rodent evolutionary relationships is 
a convenient summary of the challenges presented to rodent 
systematics, in particular rodent phylogenetics, three decades 
ago. There were, for example, unresolved questions about the 
identity and composition of major rodent groups and the phylo-
genetic significance of traditional myological, cranio-mandib-
ular, and dental traits. The monophyly of major groups, such 
as caviomorphs, was in question on both morphological and 
immunological grounds. Uncertainties about the major routes 
of intercontinental dispersal of rodent lineages were rooted in 
such phylogenetic difficulties and associated controversies.

DNA amplification and sequencing allowed for an examina-
tion of these and other issues in rodent systematics with new 
impetus, providing access to a wealth of heritable variation to 

tackle systematic issues at all levels. Early applications of the 
polymerase chain reaction (PCR) were greatly facilitated by the 
reporting of “universal” primers to target the amplification and 
sequencing of fragments of the mitochondrial genome (Kocher 
et al. 1989). For instance, at the species level, PCR amplification 
and sequencing fueled the then emerging field of phylogeogra-
phy (Avise 2009), which resulted in much increased power to 
uncover variation within and between species. Importantly, as 
recognized early on, phylogeography also represented a natu-
ral, tree-based link between population genetics and phyloge-
netics (Avise et al. 1987), which easily ties with some of the 
most widely used species concepts.

Currently, rodent systematics is undergoing a major tran-
sition into the “genomic era” (e.g., Lessa et al. 2014), whose 
impact we can only anticipate in general terms. Here, we 
describe major changes in rodent systematics as a component 
of major advances in mammalian systematics over the last 
decades, resulting primarily from the combination of DNA 
sequencing and phylogenetics.

The goals of this paper are: 1)  to provide an overview of 
progress in rodent systematics, with emphasis on the last three 
decades, broadly corresponding to the “DNA sequencing era” 
of systematics; 2)  to identify major remaining challenges 
in rodent systematics; and 3)  to point to prospects for future 
advances in particularly promising areas. Although we allude 
to paleontological contributions in the field, our overview is 
strongly biased toward extant rodents.

Species Limits, Hybridization, and 
Introgression

Systematics at the species level entails the identification and 
taxonomic recognition of species, which requires an under-
standing of what constitutes variation within species, as well as 
what characterizes different, especially closely related, species. 
A review of the evolution of concepts and methods in this area 
is outside the scope of this article. Rather, we identify some of 
the major trends and refer to selected study cases in rodents that 
provide good examples and applications. We also examine in 
detail the consequences of changing concepts and practices of 
systematics for the current understanding of rodent taxonomy, 
most notably for the recognition of a much larger number of 
species than in earlier decades.

In particular, we examine how DNA data have been used in 
the recognition and characterization of rodent species, what 
we have learned about introgression and incomplete lineage 
sorting as complementary paths for the evolution of incongru-
ences between gene trees and species trees, and what studies 
of contact zones and hybridization tell us about the nature 
of species divergence and isolation. This is an area in which 
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genomic-scale studies are anticipated to have a great impact in 
the practice of systematics at the species level.

Species concepts and species delimitation.—During the past 
century, there was a large debate on species concepts, known 
as the species problem, centered on how to define the species 
category (Hey 2001). About 30 species definitions have been 
proposed; however, in a series of papers, de Queiroz (1995, 
2005, 2007) advanced a unifying species concept, in which 
species are envisioned as “separately evolving metapopula-
tions, or more specifically [with] segments of such lineages,” 
in the so-called General Lineage Concept of Species (GLC). 
The widespread adoption of this concept (but see Hausdorf 
2011) allowed overcoming of the species problem—i.e., pro-
viding a species concept that can be applied throughout the tree 
of life. Under the GLC, other properties, such as reproductive 
isolation, monophyly, and morphological differentiation, which 
originally were suggested as necessary properties of species 
(e.g., Mayr 1963), are not considered indispensable. However, 
these properties are seen as secondary properties relevant to 
species delimitation because they constitute operational criteria 
to infer lineage separation (de Queiroz 2007). As noted, species 
may or may not acquire these properties during the course of 
their existence; in addition, the order in which these properties 
are eventually acquired varies among species. Therefore, after a 
speciation event, there is a gray zone in which a given second-
ary criterion may fail to delimit the two sister species (figure 1 
in de Queiroz 2007). For instance, it is well known that even in 
absence of gene flow, for a gene neutral to speciation, two sis-
ter species would become reciprocally monophyletic only after 
a period of time that is mostly a function of population sizes 
(Pamilo and Nei 1988). Given these difficulties, delimitation 
of species is one of the most challenging tasks of organismal 
biology (Coyne and Orr 2004).

The rapid adoption of PCR in systematics fostered a flurry 
of applications in phylogeography (Avise 2009; Riddle and 
Jezkova 2019) and related studies of variation within species, 
many of which turned out to be highly structured and were sus-
pected to be multispecies aggregates. Applications of protein 
electrophoresis and chromosomal assessments, which had ear-
lier opened new ways for species discovery and delimitation in 
earlier decades, declined and were only partially replaced by 
microsatellite and other nuclear DNA assays.

The recent recognition of a cryptic species of flying squirrel 
in the North American Pacific northwest (Glaucomys orego-
nensis) illustrates the use of DNA data for species recognition 
and delimitation (Arbogast et al. 2017, and references therein). 
Phylogeographic studies of flying squirrels in North America 
had uncovered two, largely allopatric mitochondrial clades, 
that differed by > 12% sequence divergence, within Glaucomys 
volans. Such divergence is unusually high relative to reported 
intraspecific variation in mammals (Baker and Bradley 2006). 
Microsatellite data uncovered no evidence of hybridization in 
a few localities in which these two forms were found in sym-
patry; furthermore, one microsatellite locus showed mutually 
exclusive sets of alleles between these two clades (Arbogast 
et al. 2017). A review of the taxonomic literature indicated that 

the name G. oregonensis was to be applied to one of the two 
clades, whereas the other corresponded to a more restricted 
understanding of G. volans. It was shown that the latter was 
phylogenetically closer to G. sabrinus than either to G. orego-
nensis. Finally, as noted by the authors, morphological varia-
tion within and between these species needs to be reanalyzed 
in light of the patterns of molecular divergence. The traits used 
in the original description to diagnose G. oregonensis are not 
those used to recognize it as a distinct species.

Mito-nuclear discordance and introgression.—PCR-based 
studies of geographical variation have also uncovered cases of 
incongruence between loci, or between mitochondrial DNA 
(mtDNA) and other types of information (e.g., earlier species or 
subspecies designations, karyotypes, morphology). Perhaps the 
simplest (and most widely documented) case of mito-nuclear 
discordance is the result of mitochondrial capture. The starting 
point is an observation of congruence among nuclear variants 
that contrasts with an incongruent distribution of mitochondrial 
haplotypes. An early example was provided by a study of the 
relationships between species of pocket gophers of the genus 
Thomomys. Specifically, allozyme data and sequences of one 
nuclear locus were consistent with T.  bottae being paraphy-
letic relative to a monophyletic T. townsendii, whereas the lat-
ter was polyphyletic in its mtDNA (Patton and Smith 1994). 
Mitochondrial introgression from T. bottae into T. townsendii, 
facilitated by mating asymmetry (Patton and Smith 1993), was 
documented to be in part responsible for this pattern.

Introgression implies horizontal gene transfers (in the exam-
ple above, of mitochondrial genomes) between species that are 
more recent than the speciation event separating those species 
(Fig. 1); consequently, the pattern and timing (or relative levels) 
of nuclear and mitochondrial divergence offer clues to iden-
tify introgression. For example, Good et al. (2008) documented 
hybridization as a cause for mitochondrial introgression in 
chipmunks, contrasting the pattern of mtDNA variation with 
that of four nuclear loci. Genomic data indicate that species 
remained distinct in spite of incomplete reproductive isolation 
and multiple cases of hybridization, and that introgression is 
largely restricted to the mitochondrial genome and resulted 
from historical, not ongoing, hybridization (Good et al. 2015).

Although introgression may be uncovered in comparative 
studies of variation within and between species, the processes 
leading to introgression are best studied in hybrid zones. In 
a recent review of mammalian hybrid zones, Shurtliff (2013) 
concludes that hybridization is more common than previ-
ously recognized and is often asymmetrical for multiple rea-
sons, including relative abundances of species in contact areas, 
asymmetric mate preferences, and other genetic and ecological 
interactions. An example in pocket gophers is offered by Ruedi 
et al. (1997), who show mitochondrial introgression extending 
well beyond the limits of an otherwise narrow hybrid zone.

The classical hybrid zone formed by Mus musculus musculus 
and M.  m.  domesticus in central Europe has served to docu-
ment how genetically based mate preferences, hybrid sterility, 
and positive natural selection interact in determining the local 
dynamics of hybridization and the direction and magnitude of 
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introgression of genes away from the hybrid zone (Geraldes 
et al. 2008). Introgression of a chromosomal segment into the 
native genome of a species requires recombination. Studies of 
Mus have shown that centromeric regions, which have reduced 
recombination, are less likely to introgress than other regions 
of the same chromosomes (Payseur 2016). There appears to be 
stronger selection against introgression in the X chromosome 
than in autosomal loci (Geraldes et  al. 2008). There are also 
known cases of Y-chromosome introgression (Geraldes et  al. 
2008, and references therein), but the frequency of this phenom-
enon is unknown at this point. Ongoing studies of hybridization 
in woodrats (Neotoma) illustrate the roles of mate choice in 
asymmetrical hybridization (Coyner et al. 2015). Additionally, 
ecological segregation of species and selection against hybrids 
also play a role in limiting hybridization (Shurtliff et al. 2014).

The net result of these complex interactions is that intro-
gressed segments usually represent a small fraction of the 
genome, whose long-term success greatly depends on their 
effects on fitness in the recipient species (White et al. 2009). 
A  potential illustration is warfarin resistance in the house 
mouse (M. m. domesticus), which seems to be based on intro-
gression of a relevant allele from M. spretus. Hedrick (2013) 
reviewed this and other cases of introgression and concluded 
that introgression may be a source of adaptive evolution of 
recipient species (see also Mallet et al. 2016).

In sum, introgression may be important for fueling adap-
tive evolution but appears to be restricted to relatively minor 

segments of the genome. For the practice of taxonomy at the 
species level, however, it may introduce a bias in species delim-
itation given the widespread use of mtDNA data and the far 
more limited use of nuclear DNA loci and other relevant (e.g., 
chromosomal) data in species discovery and delimitation.

Incomplete lineage sorting.—It has long been recognized 
that incomplete lineage sorting between successive speciation 
events is a major source of incongruence between gene trees and 
species trees (Pamilo and Nei 1988). Briefly, species trees con-
dition, but do not determine, gene trees. Even in the absence of 
introgression, incomplete sorting of ancestral polymorphisms 
allows different loci to have different genealogical topologies 
(Fig. 1). This is well illustrated by the human–chimp–gorilla 
genomes, in which most genes reflect the accepted species tree 
(humans and chimps closer to each other than either is to goril-
las), but the other two possible topologies are also represented 
in the genomes; in fact, segments representing each of the 
topologies are interspersed along chromosomes (Pääbo 2003; 
Ebersberger et al. 2007).

Under neutrality, the opportunity for a gene tree to depart 
from the species tree due to incomplete lineage sorting is directly 
related to effective population size, and is consequently high-
est in autosomal loci, intermediate in X-linked loci, and low-
est in Y-linked or mitochondrial genes. In addition, incomplete 
lineage sorting requires that a given polymorphism survives 
through two speciation events; therefore, it is more likely to 
occur in cases of rapid diversification (i.e., short times between 

Fig. 1.—Relationships between gene (allele) trees (lines) and species trees (shaded area). The ancestry of alleles (circles) of three species, result-
ing from two successive speciation events, is tracked to two ancestral alleles. The symbol X signals allele extinction. A) a gene tree congruent with 
the species tree. B, C) gene trees incongruent as a result of incomplete lineage sorting. D–F) the same gene tree topologies of A–C, but resulting 
from introgression.
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successive speciation events). Incomplete lineage sorting may 
be common in groups that have undergone rapid diversification, 
especially in autosomal loci.

Documenting incomplete lineage sorting, however, is diffi-
cult because it requires sampling multiple loci. Finding diag-
nostic sites to document incongruence between gene trees is 
difficult in autosomal loci, which in closely related species 
usually have limited variation. Finally, topological differences 
in gene trees may not suffice to distinguish introgression from 
incomplete lineage sorting (Fig. 1). In sum, detecting incom-
plete lineage sorting often requires substantial autosomal gene 
sampling; consequently, such efforts are restricted to a rela-
tively small number of case studies (e.g., Rattus in Pagès et al. 
2013).

Tucker et  al. (2005) analyzed the phylogeny of the genus 
Mus using two mitochondrial fragments and six nuclear loci. 
They found statistical support for mito-nuclear incongruence 
but could not discern the possible roles of introgression or 
incomplete lineage sorting. In some cases, apparent incongru-
ence between gene trees was not statistically supported, sug-
gesting rate heterogeneity and homoplasy as potential causes 
for the observed topological differences. More recent analyses 
at the genomic scale provide multiple examples of gene tree 
incongruences, a fraction of which are attributable to incom-
plete lineage sorting (Geraldes et al. 2008; Sarver et al. 2017). 
Using an exome capture approach, Sarver et al. (2017) exam-
ined incongruences between gene and species trees in seven 
sets of mouse species, and detected introgression in two of 
them. In all the remaining cases, incomplete lineage sorting is a 
sufficient explanation for incongruences between gene and spe-
cies trees. Importantly, incomplete lineage sorting is implied 
in all cases, a fact that may be obscured by the emphasis on 
statistical tests devised to detect introgression.

Integration of multiple datasets.—The joint consideration 
of multiple loci is not devoid of analytical dilemmas, many 
of which fall in the realm of molecular phylogenetics. As an 
example, Malaney et al. (2017) looked for overall congruence 
of five loci and, using several species-delimitation approaches, 
identified a range of possible species of jumping mice (Zapus). 
Examination of ecological variation among candidate species 
was done based on niche models. Overall, the number of puta-
tive species supported by the molecular and ecological data 
(“discovery-based” species) was much larger than the number 
of species recognized by current taxonomy.

However, the integration of DNA studies with other sources 
of relevant systematic information present substantial addi-
tional challenges that remain to be addressed. Indeed, relatively 
few studies incorporate multiple genetic (e.g., mitochondrial 
and nuclear DNA sequences, microsatellites), and qualitative 
morphological and morphometric approaches for an integra-
tive assessment of species-level taxonomy. Patton et al. (2007) 
provide an exemplary case in the study of woodrats of the 
Neotoma lepida group. Phylogenetic criteria delineate four 
major units, which are recognized as species on the additional 
basis of consistent morphological differentiation and evidence 
of full reproductive compatibility within each of these units. 

Subspecific differentiation is also recognized in species that 
have substantial internal structure demonstrable, to various 
extents, by different data sets (see Patton and Conroy 2017 for 
additional discussion of subspecies delimitation).

Advances in Understanding Rodent Species 
Diversity

We compiled a list, intended to be exhaustive, of living rodent 
species described from January 2000 up to December 2017 
(Supplementary Data SD1). The list includes only newly pro-
posed specific names (i.e., new subspecies are not considered); 
however, new names that have failed to comply with the pro-
visions of the International Code of Zoological Nomenclature 
(ICZN 1999), in other words that are not available, were not 
included (e.g., Ctenomys mariafarelli Azurduy, 2005 and 
Cuniculus hernandezi Castro, López, and Becerra, 2010; see 
Bidau 2015 and Ramírez-Chaves and Solari 2014). The list does 
not include either newly considered species for which already 
available names apply (i.e., names rescued from the synonymy 
of already considered distinct species), including those elevated 
from subspecies to species (e.g., Grammomys ibeanus shown 
to be distinct from G.  cometes by Kryštufek et  al. (2008) or 
the case of Glaucomys oregonensis described above). Newly 
proposed species are considered even if they were later sug-
gested to be synonyms (e.g., Abrawayaomys chebezi—see 
Percequillo et al. 2017). Similarly, we have not evaluated the 
evidence presented to sustain any new name. Finally, we have 
not considered changes of generic allocation of new species 
(e.g., the form rupicola was described by Granjon et al. (2002) 
as a species of Gerbillus and it was considered as a species of 
Dipodillus by Musser and Carleton 2005; see also Monadjem 
et  al. 2015, who regard this form as a species of Gerbillus). 
A  revision of the status, distinction, and relationships of the 
newly proposed species is out of the scope of the present paper. 
We expect that, even with these caveats, our list is reflective of 
the general trends of rodent taxonomy.

The single most important point regarding rodent taxonomy 
is that we are in an age of species discovery. At least 248 new 
rodent species have been described from January 2000 to 
December 2017 (Table 1; Supplementary Data SD1); of these, 
at least 41 have been described in the Journal of Mammalogy 
(JM; Table 2). Thus, an average of 13.8 new rodent species 
were described each year since 2000. This number is larger 
than the one (ca. 11.1) obtained by Reeder et al. (2008) for the 
period July 1992–June 2006 (with an overlap of 6.5 years with 
the period analyzed by us). The fact that this is an age of rodent 
species discovery needs to be recognized not only by the direct 
users of taxonomic knowledge, including ecologists, biogeog-
raphers, and conservation biologists, but also by funding agen-
cies and officers in charge of granting collection permits. Field 
collection of specimens and collections-based research needs 
to be intensified to characterize rodent diversity.

The 248 new rodent species belong to 21 families (Table 1; 
Fig. 2) of the 35 living families currently recognized (Fig. 3). 
Most of the new rodent species belong to the families Muridae 
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(n = 99) and Cricetidae (n = 87), which in turn are the most 
diverse of the order (see current numbers in Mammal Diversity 
Database 2018; see also Burgin et al. 2018); the number of spe-
cies described in these two families is an order of magnitude 
larger than the number of species described in each of the other 
19 rodent families. Within Muridae and Cricetidae, most new 
species belong to the subfamilies Murinae and Sigmodontinae, 
respectively. Of particular interest is the description of the 
Laotian rock rat, Laonastes aenigmamus, which is the sole living 
representative of the family Diatomyidae, previously thought to 
be extinct since the Miocene (Jenkins et al. 2005; Huchon et al. 
2007). Also remarkable is the recent description in the JM of 
the third living species of Platacanthomyidae, the blind mouse, 
Typhlomys nanus (Cheng et  al. 2017). Finally, the families 
Aplodontidae, Diatomyidae, Dinomyidae, Heterocephalidae, 
Petromuridae, and Zenkerellidae remain formed by a single 
living species each (Burgin et al. 2018).

In particular, new species are mostly described based on 
South American (n = 104), Asian (n = 73), and African (n = 45) 
specimens, representing 41.9%, 29.4%, and 18.1% of the new 
species, respectively. These numbers reflect the fraction of the 
high rodent diversity of each continent that still awaits discov-
ery, in particular in the three continents of high overall biotic 
richness. In addition, these discoveries are the direct result 
of the research efforts conducted on the fauna of each area. 
Assessing the relative contribution of each of these two fac-
tors is outside the scope of this synthesis, but we suggest that 
the large number of new South American rodents is, in part, 
due to the intense taxonomic work that is being carried out on 
almost all South American countries (e.g., see author affilia-
tions in the recently treatise of South American rodents edited 
by Patton et al. 2015). Regarding the first factor, it is noticeable 
that the single European species, Mus cypriacus, comes from 
the Republic of Cyprus (Cucchi et al. 2006), on the Island of 

Cyprus, which is closer to the Asian mainland than to the coast 
of Europe. Similarly, only seven species in our list were discov-
ered in North America, all of which came from Mexico. Also 
of interest is the fact that all but one of the 14 new species from 
Oceania are from Papua New Guinea; the exception is the giant 
rat, Uromys vika, from the Solomon Islands recently described 
in JM by Lavery and Judge (2017).

Among the less explored regions on Earth is the Indo-Pacific 
region, where several recent discoveries have highlighted our 
limited knowledge of its rodent fauna. Several early explora-
tions contributed to the knowledge of rodents in this region 
(e.g., Thomas 1898, 1920), but studies carried out over the last 
two decades have shed light on the rodent diversity of large 
oceanic islands such as Luzon and Sulawesi. Surveys of altitu-
dinal gradients on Luzon (Heaney et al. 2016) have doubled the 
number of described endemic species since 2000 (from 28 to 
56 species), with several new species of Apomys, Rhynchomys, 
Archboldomys, and other species that have prompted the crea-
tion of new genera (Heaney et al. 2009, 2016; see below for more 
details). A similar trend can be expected on the large oceanic 
island of Sulawesi, and from the Moluccas (Fabre et al. 2013c, 
2018) and the large Island Shelf of Papua New Guinea, where 
few thorough taxonomical surveys of mammals or surveys of 
altitudinal gradients have been implemented. Morphological 
and taxonomic work based on sparse museum collections 
has only shed light on some endemic Papuan genera such as 
Brassomys, Mirzamys, or Baiyankamys (Helgen and Helgen 
2009; Musser and Lunde 2009) or new species of Leptomys 
and Pseudohydromys (Musser et al. 2008; Helgen and Helgen 
2009). The complementary implementation of molecular-based 
methods of species delimitation on complex species belonging 
to widespread Papua New Guinea lineages, such as the diverse 
genera Melomys, Rattus, or Uromys, might prove an impor-
tant step toward the understanding of the rodent diversity of 

Table 1.—Number of new rodent species per family and continent described between January 2000 and December 2017 (see text and 
Supplementary Data SD1 for details). 

Family Number of new species Africa Asia Europe Oceania North America Central America South America

All families 248 45 73 1 14 7 4 104
Abrocomidae 1       1
Bathyergidae 5 5       
Caviidae 2       2
Chinchillidae 1       1
Cricetidae 87  7   7 3 70
Ctenomyidae 7       7
Cuniculidae 2       2
Dasyproctidae 1       1
Diatomyidae 1  1      
Dipodidae 3  3      
Echimyidae 8       8
Erethizontidae 6       6
Gliridae 1  1      
Heteromyidae 4      1 3
Muridae 99 36 48 1 14    
Nesomyidae 4 4       
Octodontidae 3       3
Platacanthomyidae 1  1      
Sciuridae 6  6      
Sminthidae 1  1      
Spalacidae 5  5      
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Table 2.—Species newly described in the Journal of Mammalogy (January 2000–December 2017).

Species Family Continent Evidence Authors

Tapecomys primus Cricetidae South America Morphology, molecular Anderson and Yates (2000)
Akodon paranaensis Cricetidae South America Morphology, karyotypes, molecular Christoff et al. (2000)
Abrocoma uspallata Abrocomidae South America Morphology, karyotypes Braun and Mares (2002)
Oxymycterus josei Cricetidae South America Morphology, molecular Hoffmann et al. (2002)
Bullimus gamay Muridae Asia Morphology Rickart et al. (2003)
Thomasomys onkiro Cricetidae South America Morphology Luna and Pacheco (2002)
Limnomys bryophilus Muridae Asia Morphology, karyotypes Rickart et al. (2002)
Peromyscus schmidlyi Cricetidae North America Morphology, karyotypes, molecular Bradley et al. (2004)
Chrotomys sibuyanensis Muridae Asia Morphology, molecular Rickart et al. (2005)
Akodon philipmyersi Cricetidae South America Morphology, karyotypes, molecular Pardiñas et al. 2005)
Neusticolmys ferreirai Cricetidae South America Morphology, karyotypes Percequillo et al. (2005)
Rhynchomys banohao Muridae Asia Morphology Balete et al. (2007)
Rhynchomys tapulao Muridae Asia Morphology Balete et al. (2007)
Proedromys liangshanensis Cricetidae Asia Morphology Liu et al. (2007)
Hylomyscus walterverheyeni Muridae Africa Morphology Nicolas et al. (2008)
Phyllomys sulinus Echimyidae South America Morphology, karyotypes Leite et al. (2008)
Akodon viridescens Cricetidae South America Morphology, karyotypes, molecular Braun et al. (2010)
Cerradomys goytaca Cricetidae South America Morphology, karyotypes Tavares et al. (2011)
Rhipidomys itoan Cricetidae South America Morphology, karyotypes, molecular Costa et al. (2011)
Rhipidomys tribei Cricetidae South America Morphology, karyotypes, molecular Costa et al. (2011)
Ctenomys ibicuiensis Ctenomyidae South America Morphology, karyotypes, molecular Freitas et al. (2012)
Holochilus lagigliai Cricetidae South America Morphology Pardiñas et al. (2013)
Thomomys nayarensis Geomyidae North America Morphology, molecular Mathis et al. (2013)
Peromyscus carletoni Cricetidae North America Morphology, karyotypes, molecular Bradley et al. (2014)
Tympanoctomys kirchnerorum Octodontidae South America Morphology, molecular Teta et al. (2014)
Calassomys apicalis Cricetidae South America Morphology, karyotypes, molecular Pardiñas et al. (2014)
Abrothrix manni Cricetidae South America Morphology, molecular D’Elía et al. (2015)
Hyorhinomys stuempkei Muridae Asia Morphology, molecular Esselstyn et al. (2015)
Rattus detentus Muridae Oceania Morphology, molecular Timm et al. (2016)
Peromyscus gardneri Cricetidae Central America Morphology, molecular Lorenzo et al. (2016)
Gracilimus radix Muridae Asia Morphology, molecular Rowe et al. (2016)
Oecomys franciscorum Cricetidae South America Morphology, molecular Pardiñas et al. (2016)
Necromys lilloi Cricetidae South America Morphology, molecular Jayat et al. (2016)
Juliomys ximenezi Cricetidae South America Morphology, karyotypes, molecular Christoff et al. (2016)
Peromyscus kilpatricki Cricetidae North America Morphology, karyotypes, molecular Bradley et al. (2017)a

Neodon medogensis Cricetidae Asia Morphology, molecular Liu et al. (2017)
Neodon nyalamensis Cricetidae Asia Morphology, molecular Liu et al. (2017)
Typhlomys nanus Platacanthomyidae Asia Morphology, molecular Cheng et al. (2017)
Ototylomys chiapensis Cricetidae North America Morphology, karyotypes, molecular Porter et al. (2017)
Uromys vika Muridae Oceania Morphology, molecular Lavery and Judge (2017)
Halmaheramys wallacei Muridae Asia Morphology, molecular Fabre et al. (2017)b

a Published online in 2016.
b published online in 2017 and listed as 2018 in the Literature Cited.

Fig. 2.—Distribution among families of 248 species of rodents newly described in the period January 2000–December 2017.
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this poorly known region. In view of the ecological threats re-
lated to nickel mining and logging in this Indo-Pacific region, 
more fieldwork must be undertaken in this highly threatened 
region where most of the murid diversity in found. Certainly, 
the need for integrative taxonomic approaches and further field 
collection applies to most areas of the world, in particular the 
Neotropics, Africa, and Asia.

Several new rodent species were discovered in the course of 
revisionary work. This is the case for Jayat’s cavy, Microcavia 
jayat, whose type series members were collected in 1969, 
whereas the species was only recently described by Teta et al. 
(2017). In contrast, several other new species were described on 

the basis of newly collected specimens, as illustrated by Lillo’s 
hairy-tailed akodont (Necromys lilloi), whose type series mem-
bers were collected a year before the species was described by 
Jayat et al. (2016). In either case, all studies relied on collection 
material, reinforcing the importance of research collections 
and the need for sustained collecting efforts (Rocha et al. 2014; 
Cook and Light 2019).

An inspection of the list of 41 new species described in JM 
(Table 2) shows that 17.1% were discovered based on only 
morphological evidence, 12.2% on the basis of morphology 
and karyotypes, 29.2% based on combined morphological, 
karyotypic, and molecular evidence, and 41.5% based on both 
morphological and molecular data. Combining these numbers 
indicates that morphological information was taken into account 
in all cases, whereas molecular and karyotypic data were used 
in 70.7% and 41.4% of the cases, respectively. Interestingly, in 
the span of time analyzed (2000–2017), there is no apparent 
trend toward the usage of a particular type of evidence.

A combination of two of the about 30 delimitation criteria 
that have been proposed (Sites and Marshall 2003) appears 
to dominate current taxonomic practice, at least in the case of 
rodents. First, monophyletic groups are identified in a genea-
logical analysis based on mtDNA sequences alone or in con-
junction with one or a few nuclear loci. Second, the existence of 
qualitative or quantitative morphological discontinuities, and in 
some cases, chromosomal discontinuities, among the identified 
monophyletic groups is assessed. If clades are morphologically 
(or chromosomally) distinct, they are considered distinct spe-
cies. Most of the recently described new rodent species have 
been delimited using this approach (Table 2; Supplementary 
Data SD1). One of the main drawbacks of this scheme is that it 
requires a threshold of genetic divergence to distinguish between 
intra- and interspecific variation (Knowles and Carstens 2007). 
Additional problems arise because, as mentioned above, gene 
trees can differ from species trees. The application of multilo-
cus-multispecies coalescent-based approximations advanced to 
face these limitations (Knowles and Carstens 2007; Fujita et al. 
2012; Edwards et al. 2016) is, for the moment, far from being 
a common practice in rodent taxonomy. Single- and multilocus 
coalescent methods are starting to be used in rodent species dis-
covery, as exemplified, respectively, in the case of the two new 
vole species of the genus Neodon described in JM by Liu et al. 
(2017) and the evaluation of species limits of ground squir-
rels of the genus Otospermophilus by Phuong et  al. (2014). 
We anticipate that coalescent-based approaches will rapidly 
become incorporated in rodent species discovery and valida-
tion (e.g., da Cruz and Weksler 2018).

As mentioned, the majority of descriptions of new rodent 
species now take advantage of the power of the genealogical 
analysis of DNA sequences to discover and delimit species-
level lineages, although coalescent-based analyses (e.g., Zhang 
et  al. 2011; Carstens et  al. 2013; Sukumaran and Knowles 
2017) are seldom implemented. However, with a few excep-
tions, even today, most species have only been examined for 
sequence variation in mtDNA. A much smaller number of spe-
cies is represented by (usually a few) nuclear DNA loci. This 

Fig. 3.—Phylogenetic relationships among rodents to the level of 
families. Polytomies reflect relationships whose solutions we (at 
times conservatively) consider to be insufficiently supported. Within 
Caviomorpha, there is support for a Cavioidea–Erethizontoidea 
(Erethizontidae) clade, but it is less supported than the Octodontoidea–
Chinchilloidea (Chinchillidae) clade (see Upham and Patterson 
2015). The polytomy depicted within Muroidea may be resolved 
with Calomyscidae as sister to the remaining three families, of which 
Nesomyidae may be sister to a clade formed by Cricetidae and 
Muridae (see Steppan and Schenk 2017).
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situation is expected to rapidly change as costs of enrichment 
(e.g., capture systems) and reduced representation (e.g., RAD-
seq) methods for high-throughput sequencing decrease and 
coalescent-based methods for species discovery and validation 
become widely adopted. Finally, it is also of interest that only a 
handful of studies (e.g., Jayat et al. 2010) have provided molec-
ular synapomorphies for the newly delimited species. Instead, 
most studies using DNA sequences to delimit species have used 
the criterion of monophyly and have ignored molecular char-
acters themselves in the diagnosis of newly delimited species.

Proposed New Rodent Genera
At least 32 new rodent genera have been proposed between 
2000 and December 2017 (Supplementary Data SD1). As in 
the case of species, the number of recognized genera increases 
if genera based on already available names are also considered 
(e.g., Gerbilliscus Thomas, 1897, long regarded as a subgenus 
of Tatera Lataste, 1882, is now considered a genus, following 
Musser and Carleton 2005). In parallel, some of the newly pro-
posed genera listed here have been recently synonymized (e.g., 
Pipanacoctomys and Salinoctomys are now considered part of 
Tympanoctomys—see Díaz et al. 2015). Newly described gen-
era belong to the families Bathyergidae, Cricetidae, Echimyidae, 
Muridae, and Octodontidae. However, by far most of them belong 
to the New World subfamily Sigmodontinae of Cricetidae.

Most of the new genera recognized and named as results of 
revisionary work were previously recognized genera that were 
shown to be polyphyletic (e.g., the murid Soricomys was pro-
posed to allocate species previously placed into Archboldomys—
see Balete et al. 2012). Paradigmatic in this sense is the case of 
the sigmodontine Oryzomys; species traditionally allocated to 
it (e.g., Musser and Carleton 2005) are now placed in 12 gen-
era, of which 11 were proposed since 2006 (the 12th being a 
much less diverse Oryzomys). Remarkably, 10 of the new gen-
era were proposed in a single paper by Weksler et al. (2006; 
see also D’Elía and Pardiñas 2007); the 11th was proposed by 
Pine et  al. (2012). At the same time, some new genera have 
been proposed on the basis of newly discovered species based, 
in turn, on newly collected specimens. This is the case of the 
murid genus Tonkinomys, and its single species daovantieni, 
described by Musser et  al. (2006) on the basis of specimens 
collected 2  years earlier. Similar is the case of Saxatilomys, 
a genus described to encompass the newly described species 
paulinae that is based on specimens collected in 1998 and 1999 
(Musser et al. 2005).

Remarkably, some diverse genera still have unclear bound-
aries. The New World cricetid Peromyscus exemplifies this 
scenario. Peromyscus, the Drosophila of North American 
mammalogy (Musser and Carleton 1993), as delimited by 
Musser and Carleton (2005; see Carleton 1980), encompasses 
a large array of deer mice that form a paraphyletic group with 
respect to other clades traditionally recognized as genera (as 
Megadontomys, Osgoodomys, Neotomodon, Podomys, and 
Habromys—see Miller and Engstrom 2008, and references 
therein). Two alternative options have been presented for 

classification to reflect the phylogeny (somewhat intermediate 
schemes are also possible). The first would include the other 
genera in the synonymy of Peromyscus, which would become 
a large and morphologically diverse genus. The second clas-
sificatory option is, as was done with Oryzomys (see above), 
to split Peromyscus into distinct genera (mostly by elevating 
already recognized species groups to genera—see Carleton 
1980 and Musser and Carleton 2005). Additional systematic 
work is needed to render a stable species tree of all involved 
taxa, but also to revise the diagnosis of Peromyscus (and diag-
nose additional genera as needed).

As the era of new species discovery and revisionary work 
continues, we expect new genera to continue to be proposed in 
the next few years. A large fraction (approximately 65 %) of 
the genera described since 2000 have been erected primarily 
on the basis of phylogenetic analyses showing that an already 
recognized genus was not monophyletic (e.g., Neomicroxus 
was proposed to accommodate species formerly placed in 
Akodon—Alvarado-Serrano and D’Elía 2013); i.e., lineages 
of genus level identified via phylogenetic analyses were later 
diagnosed by the presence or absence of “trenchant” charac-
ter states. It is now less common to delimit new genera only 
on the basis of the presence or absence of trenchant character 
states, as was the case for the sigmodontine Juliomys (González 
2000). This trend is in line with what is seen in other groups; 
we expect it will persist and increase in the future.

Phylogenetics and Classification
High species richness and morphological diversity have 
prompted researchers to propose several classifications to 
organize rodent diversity. Functional constraints related to 
diprotodonty (Druzinsky 2015), a high degree of functional 
convergence and morphological versatility at different hier-
archical levels (e.g., D’Elía 2003; Mercer and Roth 2003; 
Steppan et al. 2004; Fabre et al. 2012), and the rapid diversi-
fication of several major rodent groups (Steppan et  al. 2004; 
Fabre et al. 2012; Steppan and Schenk 2017) have resulted in 
a wealth of phylogenetic hypotheses that have been in part sta-
bilized by phylogenies based on molecular data (Huchon et al. 
1999; Adkins et al. 2001; Fabre et al. 2015).

Here, we address progress in rodent phylogenetics, roughly 
since the publication of Luckett and Hartenberger (1985). We 
begin by providing a brief overview of the history of high-level 
rodent classification and phylogenetics preceding that vol-
ume. We then examine the impact of DNA-based phylogenetic 
studies (with reference to morphological data as needed), and 
provide a summary of issues that we consider to be resolved, 
as well as outstanding issues that are expected to be tack-
led in the near future with a combination of genomic- and 
phenomic-scale data.

Rodent Classification: A Brief Historical Overview

A recent summary of the history of rodent classification is pro-
vided by Fabre et al. (2015). We restrict this section to a very 
succinct overview. Blainville De (1816) was the first to propose 

D
ow

nloaded from
 https://academ

ic.oup.com
/jm

am
m

al/article-abstract/100/3/852/5498027 by Tarrant C
ounty C

ollege user on 26 M
ay 2019

http://academic.oup.com/jmammal/article-lookup/doi/10.1093/jmammal/gyy179#supplementary-data


D’ELÍA ET AL.—RODENT SYSTEMATICS 861

a classification of Rodentia into three eco-morphological groups 
based on their lifestyles: “fouisseurs” (burrowers), “grimpeurs” 
(climbers), and “marcheurs” (walkers). This ecological clas-
sification was quickly abandoned in favor of an arrangement 
primarily based on cranio-mandibular (Waterhouse 1839) and 
associated myological (Brandt 1855) characteristics. Three 
suborders were recognized by these authors based on the origin 
on the skull and insertions on the jaws of the masseter and tem-
poralis jaw adductor muscles: Sciuromorpha, Hystricomorpha, 
and Myomorpha. This scheme remained in use for most of 
the 20th century (e.g., Simpson 1945). A  related dichotomic 
classification was proposed by Tullberg (1899), who consid-
ered the position of the angular process relative to the incisor 
plane to divide rodents in two groups, the Sciurognathi and the 
Hystricognathi. This subdivision was also used during the last 
century (e.g., Chaline et  al. 1977; Wilson and Reeder 1993; 
Landry 1999). Of these two large groups, only Hystricognathi 
forms a strongly supported clade in phylogenies based on 
molecular data (e.g., Huchon et  al. 2000, 2007; Fabre et  al. 
2013a) and also is supported by morphology (Vianey-Liaud 
1974; Bugge 1985; Luckett and Hartenberger 1985; Woods 
and Hermason 1985; Landry 1999). Also, whereas these clas-
sifications were convenient, several rodent lineages could not 
be confidently placed into these suborders (see discussion in 
Simpson 1945). More generally, many aspects of rodent phy-
logenetics were being heatedly debated at the time of publica-
tion of Luckett and Hartenberger (1985). Chief among these 
was whether extant Old World hystricomorphs, including 
mole-rats (Bathyergidae), porcupines (Hystricidae), and allied 
taxa, were closely related to the New World caviomorphs sug-
gesting, in turn, an African origin of the latter. Several other 
high-level problems involving distinct families arose—for 
instance, the unclear position of Platacanthomyidae, either 
placed into Gliridae due to their dental characters or into 
Myomorpha due to their muscle and jaw morphology (Jansa 
et  al. 2009). Studies on rodent cranio-mandibular anatomy 
had also revealed a new type of muscle morphology, namely 
 protrogomorphy, in the monotypic family Aplodontidae and 
some extinct rodent families (Wood 1955). Other families, such 
as Anomaluridae, had unclear phylogenetic position within the 
rodent radiation. Similarly, classifications of some fossil forms 
(including the families Theridomyidae, Diatomyidae, and stem 
cricetids), mainly based on tooth morphology, also generated 
controversies.

Molecular Phylogenetics: Major Rodent Clades

Early applications of DNA-based phylogenetics (Graur et  al. 
1991; D’Erchia et  al. 1996) questioned rodent monophyly, 
but these claims turned out to be marred by methodological 
issues (e.g., Cao et al. 1994; Frye and Hedges 1995; Philippe 
1997; Huchon and Douzery 2001; Adkins et  al. 2003; Rowe 
et  al. 2010). Both morphological and molecular synapomor-
phies (e.g., Hartenberger 1985; Huchon et al. 1999; Montgelard 
et  al. 2008; Blanga-Kanfi et  al. 2009; Churakov et  al. 2010; 
Esselstyn et al. 2017) strongly support rodent monophyly, vali-
date the combination of rodents and lagomorphs into Glires 
(Hartenberger 1985; Douzery and Huchon 2004), and firmly 

place this group within the Euarchontoglires, a major placental 
clade that also includes Scandentia, Primates, and Dermoptera 
(Murphy et al. 2001; Springer et al. 2001; Meredith et al. 2011; 
Esselstyn et al. 2017).

Molecular phylogenies (e.g., Huchon et al. 1999; Smith and 
Patton 1999; DeBry and Sagel 2001; Adkins et al. 2003; DeBry 
2003; Douzery et  al. 2003; Steppan et  al. 2004; Montgelard 
et  al. 2008; Blanga-Kanfi et  al. 2009; Churakov et  al. 2010; 
Meredith et al. 2011; Fabre et al. 2013b) have greatly contrib-
uted to convergence to a new rodent classification (summarized 
in Table 3) and lead to the abandonment of previous ones. From 
these studies, based on both mitochondrial and nuclear DNA 
sequences, a new picture of family delimitation (e.g., place-
ment of Lophiomyinae within Muridae and not Cricetidae—
Schenk et al. 2013; the recognition of Sminthidae as a distinct 
family—Lebedev et  al. 2013) and suprafamilial relationships 
has emerged (Fig. 3). Currently 35 living rodent families are 
recognized and form three well-supported main lineages of 
Rodentia: 1)  a squirrel-related clade, comprising three fami-
lies; 2)  a mouse-related clade that includes 15 families; and 
3)  a guinea pig-related clade, comprising 17 families (Table 
3). However, relationships among these three clades remain 
unresolved; currently, there is no strong statistical support to 
rule out any of the alternatives (Montgelard et al. 2008; Blanga-
Kanfi et al. 2009; Churakov et al. 2010; Fabre et al. 2015; but 
see Marivaux et al. 2004 for a possible resolution).

Squirrel-related clade.—This compact group, Sciuromorpha, 
comprises three families: Sciuridae, Aplodontidae, and 
Gliridae; there is good support for a sister relationship between 
the first two (Mercer and Roth 2003; Montgelard et al. 2008; 
Blanga-Kanfi et al. 2009).

Mouse-related  clade.—This diverse rodent group is com-
posed of three major clades, namely 1)  the anomaluro-
morphs, including Pedetidae, sister to the clade formed by 
Anomaluridae and Zenkerellidae (Heritage et  al. 2016); 
2)  the castorimorphs, including Castoridae as sister to the 
clade formed by Geomyidae and Heteromyidae (Doronina 
et  al. 2017); and 3)  the highly diverse myomorphs, collec-
tively representing nine families distributed between the 
superfamilies Dipodoidea and Muroidea (Table 3). Although 
analysis of complete mitochondrial protein-coding genomes 
(Horner et al. 2007) and a structural analysis of B1 retropo-
son elements (Veniaminova et  al. 2007) have not recovered 
the mouse-related clade, this large rodent clade is found in 
the vast majority of phylogenetic studies focused on rodent 
relationships. Studies corroborating the mouse-related clade 
vary in the type evidence analyzed (distinct gene datasets and 
morphology) and in their taxonomic coverage (including fos-
sil taxa), thus representing independent tests of the monophyly 
of this rodent lineage (Michaux and Catzeflis 2000; Huchon 
et al. 2002; Adkins et al. 2003; DeBry 2003; Marivaux et al. 
2004; Steppan et  al. 2004; Farwick et  al. 2006; Montgelard 
et  al. 2008; Blanga-Kanfi et  al. 2009; Churakov et  al. 2010; 
Fabre et al. 2012; Steppan and Schenk 2017).

The relationships among the three main lineages of the 
mouse-related clade remain essentially unresolved (Fabre et al. 
2013b, 2015, and references therein). One understudied issue 
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is the relationship between Geomyidae and Heteromyidae; 
indeed, Heteromyidae might be paraphyletic to Geomyidae 
(DeBry 2003; Hafner et  al. 2007; Fabre et  al. 2012). Within 
the Muroidea, a superfamily that includes most rodent spe-
cies, the inter-relationships among families of Eumuroidea 
(i.e., Calomyscidae, Nesomyidae, Cricetidae, and Muridae) are 
still unclear. The same is true of the subfamilies of Cricetidae. 
Similarly, the phylogenetic position of the murid genus 
Leimacomys remains uncertain; a cladistics analysis of cranio-
dental and external characters indicates that it is not related to 
dendromurines as previously thought, and may, rather, represent 
one of the main lineages of murids (Denys et al. 1995). Musser 
and Carleton (2005) erected a new subfamily, Leimacomyinae, 
to place this genus. Currently, there are no molecular data for 

the sole member of this subfamily, the groove-toothed forest 
mouse Leimacomys buettneri.

Guinea pig-related clade.—This clade constitutes the suborder 
Hystricomorpha and includes the infraorders Hystricognathi and 
the Ctenodactylomorphi. The Hystricognathi is a taxonomically 
diverse group, including the families Hystricidae, Bathyergidae, 
Heterocephalidae, Petromuridae, Thryonomyidae, and 10 fami-
lies of New World caviomorphs, a monophyletic group that 
receives strong molecular (e.g., Huchon et al. 2000, 2007; Fabre 
et  al. 2013a) and morphological (Bugge 1985; Luckett and 
Hartenberger 1985; Woods and Hermason 1985; Landry 1999; 
Marivaux et al. 2002, 2004) support, which in turn effectively 
settled the controversy concerning the African origin of cavio-
morphs. On the other hand, Ctenodactylomorphi includes the 

Table 3.—Current rodent classification to the level of families. Comments include changes since Wilson and Reeder (2005), and selected refer-
ences. The extinct family Heptaxodontidae is not considered.

Suborder Infraorder Superfamily Family Comments

Sciuromorpha
   Aplodontidae  
   Gliridae  
   Sciuridae  
Supramyomorpha    New suborder (this paper)
 Anomaluromorphi   Treated as suborder in Wilson and Reeder (2005)
   Anomaluridae  
   Pedetidae  
   Zenkerellidae Separated from Anomaluridae (Heritage et al. 2016)
 Castorimorphi   Treated as suborder in Wilson and Reeder (2005)
   Castoridae  
   Heteromyidae May be paraphyletic with respect to Geomyidae (Fabre et al. 2012)
   Geomyidae  
 Myomorphi   Treated as suborder in Wilson and Reeder (2005)
  Dipodoidea   
   Dipodidae  
   Sminthidae See Rusin et al. (2016)
   Zapodidae See Lebedev et al. (2013) and Pisano et al. (2015)
  Muroidea   
   Calomyscidae  
   Cricetidae  
   Muridae Includes Lophiomyinae; see Jansa and Weksler (2004)
   Nesomyidae  
   Platacanthomyidae  
   Spalacidae  
Hystricomorpha     
 Ctenodactylomorphi    
   Ctenodactylidae  
   Diatomyidae See Jenkins et al. (2005) and Dawson et al. (2006)
 Hystricognathi    
   Bathyergidae  
   Heterocephalidae See Patterson and Upham (2014)
   Hystricidae  
   Petromuridae  
   Thryonomyidae  
  Erethizontoidea   
   Erethizontidae  
  Chinchilloidea   
   Chinchillidae  
   Dinomyidae  
  Cavioidea   
   Caviidae  
   Dasyproctidae  
   Cuniculidae  
  Octodontoidea   
   Abrocomidae  
   Ctenomyidae  
   Echimyidae Includes Myocastorinae and Capromyinae (Fabre et al., 2014, 2016)
   Octodontidae  
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families Ctenodactylidae and Diatomyidae (Jenkins et al. 2005; 
Dawson et al. 2006; Huchon et al. 2007). Major recent advances 
in the understanding of Hystricomorpha include evidence for 
a sister relationship of the superfamilies Octodontoidea and 
Chinchilloidea, as well as expansion of the highly diverse 
Echimyidae to include two groups traditionally considered dis-
tinct families, the capromyids and the myocastorids. Whereas 
the placement of myocastorids within Echimyidae appears 
clear, that of the capromyids needs further testing (Fabre et al. 
2016). Also noteworthy is the publication of a comprehensive 
multilocus phylogenetic analysis of almost all genera of cav-
iomorphs (Upham and Patterson 2015). Similarly, naked mole-
rats are placed into their own family (Heterocephalidae), rather 
than within Bathyergidae (Patterson and Upham 2014; see also 
Landry 1957). As noted above, the discovery of the Laotian rock 
rat (Laonastes aenigmamus) represented the addition of a new 
extant family (Diatomyidae), previously known only from fos-
sils, to the group of living hystricomorphs (Jenkins et al. 2005; 
Dawson et al. 2006). However, several higher-level relationships 
within Hystricomorpha remain unclear, including the posi-
tion of Hystricidae within the suborder and of Erethizontoidea 
within Caviomorpha.

The future analysis of genomic datasets, as well as the imple-
mentation of probabilistic methodologies that could better take 
into account molecular evolutionary biases using sophisti-
cated models (Lartillot and Philippe 2004; Delsuc et al. 2005; 
Blanquart and Lartillot 2008), together with the analysis of 
phenomic matrices, should help to further elucidate current 
competing alternatives and gaps in our understanding of the 
rodent tree.

Cranio-Mandibular Variation Revisited

The new higher-level phylogenetic results imply the existence 
of rampant convergence in the rodent cranio-mandibular sys-
tem. Jaw muscle classifications were based primarily on the 
presence or absence of enlarged skull foramina (the infra-
orbital foramina). Hystricomorph rodents have a very large 
infra-orbital foramen that allows the passage of the large infra-
orbital part of the zygomatico-mandibularis muscle (Fig. 4). 
In myomorphs, the infra-orbital foramen is reduced, but still 
present and intermediate in size between sciuromorph and hys-
tricomorph morphologies (Fig. 4). Both protogomorphs and 
sciuromorphs lack enlarged infra-orbital foramina. In sciuro-
morphs, a deep masseter extends over a wide zygomatic plate 
and the infra-orbital part is absent (Thorington and Darrow 
1996; Druzinsky 2010a; Cox and Jeffery 2011). The mountain 
beaver was classified into Protogomorpha on the basis of its 
lacking both a large infra-orbital foramen and a large zygomatic 
plate (Wood 1962; Druzinsky 2010a, 2010b). The apparent sim-
plicity of infra-orbital anatomy is deceiving, and its diversity 
is poorly known. Several new descriptions of this system have 
uncovered previously unknown internal structures (e.g., Cox 
and Faulkes 2014; Cox and Baverstock 2016). For instance, the 
naked mole rat, Heterocephalus glaber, appears to have con-
verged to protogomorphy in that the infra-orbital part of the 
zygomatico-mandibularis is not going through the infra-orbital 
foramen, but instead remains posterior to the lachrymal notch 
(Cox and Faulkes 2014). Morphological variation in the cranio-
mandibular system, as reported in the naked mole rat, might be 
more common than expected. Indeed, pseudo-myomorphy was 
described on the skull of Gliridae (Graphiurus—Vianey-Liaud 

Fig. 4.—Lateral view of skulls of selected rodent species, with the area of insertion of the anterior zygomatic muscle highlighted. A) Spalacidae; 
B) Nesomyidae; C) Arvicolinae; D) Pedetidae; E) Caviidae; F) Heteromyidae; G) Sciuridae; H) Capromyinae; I) Ctenodactylidae. 
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1974; Hautier et  al. 2008); an intermediary jaw between the 
typical hystricognath and sciurognath conditions was found 
in recently discovered Laonastes aenigmamus (Hautier and 
Saksiri 2009).

Despite the fact that classifications based on seemingly tren-
chant cranio-mandibular conditions have been used for more 
than a century, there have been surprisingly few studies of these 
traits. Among them, Woods (1972), Thorington and Darrow 
(1996), Hautier et  al. (2011), Druzinsky (2010a, b), and Cox 
and Jeffery (2011) have explored the diversity of this complex 
system across rodent diversity. Surprisingly, the zygo-masse-
teric anatomy of muroids, a group that includes a large number 
of wild mammals as well as laboratory organisms, has barely 
been described (Hiiemae 1971; Satoh 1997; Cox and Jeffery 
2011; Fabre et al. 2017). Recent work using dissections (Ginot 
et al. 2018) and new anatomical techniques, such as DICECT 
(Gignac et al. 2016), have opened new ways to study the cranio-
mandibular apparatus, allowing inferences of masticatory bio-
mechanical performances (Cox et al. 2012, 2013; Fabre et al. 
2017), and also to explore connections between muscles and 
bones. Comparative anatomy has shown that homology among 
muscles is currently not well understood (e.g., Voss 1988:385, 
table 38). For example, the masseter is usually split into three 
layers (superficial, deep, and zygomatico-mandibularis mas-
seters), but new parts such as the posterior temporalis (Woods 
1972:129, figure  3) and the posterior masseter (Druzinsky 
2010a; Cox and Baverstock 2016), that are likely to represent a 
structure similar to the posterior part of the zygomatico-mandib-
ularis muscle, have been described. Future work on the cranio-
mandibular system must include developmental series in order 
to identify muscle homologies and apomorphic character states 
to properly understand the evolution of this complex system.

Current Classification

The main clades detailed above falsify classifications that 
divide Rodentia into Sciurognathi and Hystricognathi, as the 
former does not form a monophyletic group. At the same 
time, the five main clades currently delimited by phylogenetic 
analyses (Fig. 3; Table 3) are mostly mirrored by the classifi-
cation provided by Carleton and Musser (2005). The squirrel-
related clade neatly corresponds to the suborder Sciuromorpha. 
Also, the three main clades within the large mouse-related 
clade match three of the suborders in Carleton and Musser 
(2005): Anomaluromorpha (Pedetidae, Anomaluridae, and 
Zenkerellidae), Castorimorpha (Castoridae, Geomyidae, 
Heteromyidae), and Myomorpha (Dipodoidea and Muroidea). 
Finally, the guinea pig-related clade corresponds to the sub-
order Hystricomorpha. Huchon et al. (2000) named this clade 
as the Ctenohystrica and provided molecular and morphologi-
cal synapomorphies that define it. Carleton and Musser (2005) 
noted that, a year earlier, “Landry (1999) introduced the name 
Entodacrya (reflecting the internal course of the nasolacrimal 
duct) to identify the Ctenodactylidae-Hystricognathi clade.” 
Carleton and Musser (2005) argued that there is no need for an 
exact match between the logical connotation of a taxon’s name 
and its taxonomic intention; for instance, not all members of 

Carnivora are carnivorous, and neither are all Afrotheria native 
of Africa. Moreover, as also noted by Carleton and Musser 
(2005), in the majority of rodent classifications, there is an 
implicit distinction between taxa (e.g., Myomorpha) and the 
morphological condition (e.g., myomorphy) that prompted 
those names, which explains why Dipodidae have been nearly 
always placed in Myomorpha. Therefore, following Carleton 
and Musser (2005), we prefer to use Hystricomorpha for 
the guinea pig-related clade (rather than the almost ignored 
Entodacrya or Ctenohystrica, which in the recent literature has 
gained some momentum).

As a last point, the large mouse-related clade, which encom-
passes the anomaluromorphs, castorimorphs, and myomorphs, 
lacks a formal name. Recognizing the importance of formally 
naming large lineages to ensure rigorous scientific communi-
cation, we here erect the new suborder Supramyomorpha, and 
define it as the group of taxa more closely related to Anomalurus, 
Castor, and Mus than to Cavia or Sciurus. At the same time, 
we retain the three major groups within Supramyomorpha 
as the infraorders: Anomaluromorphi, Castorimorphi, and 
Myomorphi (Table 3).

Nomenclature statement.—A life science identifier (LSID) 
number was obtained for this publication: urn:lsid:zoobank.
org:pub:06591B3A-6082-4C1E-8FD2-46D36579A2A7.

Concluding Remarks
A review of the recent literature shows that research at both of 
the main levels of rodent systematics, i.e., taxonomy and phy-
logenetics, is active and dynamic. First, we are in an era of spe-
cies discovery that is expected to continue during the upcoming 
years as a result of much-needed field surveys (particularly 
in Africa, Asia, and South America) and revisionary work. 
Studies of rodent taxonomy are in particular need of multigene 
data and coalescent-based approaches that make use of our cur-
rent understanding of species divergence processes. Certainly, 
the criterion of reciprocal monophyly (even for the mitochon-
drial genome) may be too restrictive to identify independently 
evolving lineages of species rank. We predict that quantifying 
the relative roles of incomplete lineage sorting and secondary 
introgression will become central issues for species delimita-
tion, placing the more restricted concern of mito-nuclear incon-
gruence into a broader context. At this point, it appears that, 
outside contact zones, incomplete lineage sorting is a more 
pervasive issue than secondary introgression, but studies in this 
respect are still insufficient.

Our review of rodent phylogenetics and classification empha-
sizes studies above the family level, but multiple problematic 
cases remain to be tackled within families. These include sub-
familial relationships (e.g., those within the family Cricetidae), 
as well as species-dense studies of very large genera (e.g., 
Rattus, Proechimys, Ctenomys). Reduced representation and 
targeted enrichment methods (e.g., RAD-seq, ultra-conserved 
elements, exome capture, transcriptome sequencing) and full 
genome sequences have begun to impact areas of the rodent 
tree that could not be satisfactorily resolved with studies of a 
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handful of genes. Our impression is that incomplete lineage 
sorting and introgression will be important below the family 
level and become considerably less significant for establishing 
relationships at higher levels. We also posit that firmly estab-
lishing gene orthology will continue to present major chal-
lenges for multigene and genomic-scale studies of higher-level 
rodent systematics. As noted, increased sophistication in the 
understanding and modeling of gene divergence will become 
increasingly important for higher-level phylogenetics, perhaps 
at the expense of the demographic assumptions required by 
coalescent-based methods.

Integrative studies of molecular and morphological data 
from both extant and extinct forms are expected to provide a 
more comprehensive and detailed picture of rodent diversifi-
cation, including aspects of morphological evolution (e.g., 
modularity, rates of morphological change). In this regard, it 
is relevant to note that past studies in paleontology and mor-
phology have mainly focused on dental evolution (Marivaux 
et al. 2002, 2004; Evans et al. 2007; Lazzari et al. 2008; Gomes 
Rodrigues 2015), but the integration of additional sources of 
evidence is required. It is possible now to access several hidden 
morphological characters thanks to new CT scan methodolo-
gies. Some studies of both middle and inner ears have already 
allowed access to key characters (Ruf et al. 2009; Mason 2015, 
2016), linking morphology and ecology (Mason 2001, 2015; 
Pfaff et  al. 2015). Chiroptera, Carnivora, Artiodactyla, and 
Primates have been the focus of several morphological stud-
ies using different morphological proxies, such as the inner ear 
(Perier et al. 2016), turbinal bones (Van Valkenburgh et al. 2011, 
2014; Yee et al. 2016), braincase (Ferreira-Cardoso et al. 2017), 
and post-cranium (Fabre et al. 2015). Rodentia has clearly been 
understudied on this matter, despite its diversity allowing the 
implementation of large-scale comparative analyses—a situa-
tion that we expect to change in the near future.

In sum, we foresee an exciting future for the study of rodent 
systematics at all levels.
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